mail unicampaniaunicampania webcerca

    Fabio MARZAIOLI

    Insegnamento di PHYSICS LABORATORY

    Corso di laurea magistrale in PHYSICS

    SSD: FIS/01

    CFU: 8,00

    ORE PER UNITÀ DIDATTICA: 80,00

    Periodo di Erogazione: Secondo Semestre

    Italiano

    Lingua di insegnamento

    INGLESE

    Contenuti

    Lo studente acquisirà familiarità e conoscenza con argomenti concernenti i) le principali nozioni riguardanti i sistemi da vuoto ed i concetti ad esso legati (Vacuum technologies); ii) i sistemi di rivelazione per radiazioni elettromagnetiche e particelle cariche; iii) la progettazione, l’elaborazione e la comunicazione di esperienze di laboratorio.

    Testi di riferimento

    Building Scientific Apparatus. John H. Moore, Christopher C. Davis, Michael A. Coplan and Sandra E. Greer. Cambridge University Press. ISBN: 9780521878586

    Obiettivi formativi

    Lo studente acquisirà familiarità e conoscenza i) con argomenti concernenti la fisica del vuoto ed i principali sistemi di misura del vuoto e di vuoto; ii) Le conoscenze dei principali sistemi di rivelazione. Le conoscenze acquisite saranno applicate nella progettazione di mini esperienze di laboratorio.

    Prerequisiti

    Buona conoscenza dei principi fondamentali della termodinamica e dei concetti di basa di elettronica

    Metodologie didattiche

    La somministrazione del corso avverrà attraverso un blocco di lezioni teoriche quantificabile in 4 CFU, ed uno di laboratorio pari a 4 CFU.

    Metodi di valutazione

    Le modalità di verifica dell’apprendimento comprendono: una parte orale concorrente al 50% della valutazione finale; una parte di laboratorio quantificabile nel 38% della valutazione finale ed una prova di comunicazione quantificabile nel 12%.

    Programma del corso

    Pysics Laboratory (8 ECTS= 4 Lectures + 4 Laboratory)
    Theory
    1-Vacuum Technology
    1.1 Gases
    The Nature of the Residual Gases in a Vacuum System; Gas Kinetic Theory, Surface Collisions, Bulk Behavior versus Molecular Behavior.
    1.2 Gas Flow
    Parameters for Specifying Gas Flow, Network Equations, The Master Equation, Conductance Formulae, Pumpdown Time Outgassing
    1.3 Pressure and Flow Measurement
    Mechanical Gauges, Thermal-Conductivity Gauges, Viscous-Drag Gauges, Ionization Gauges, Mass Spectrometers Flowmeters
    1.4 Vacuum Pumps
    Mechanical Pumps, Vapor Diffusion Pumps, Entrainment Pumps
    1.5 Vacuum Hardware
    Materials, Demountable Vacuum Connections, Valves, Mechanical Motion in the Vacuum System, Traps and Baffles, Molecular Beams and Gas Jets, Electronics and Electricity in Vacuo
    1.6 Vacuum-System Design and Construction
    Some Typical Vacuum Systems, Differential Pumping, The Construction of Metal Vacuum Apparatus, Surface Preparation, Leak Detection, Ultrahigh Vacuum

    2-Electronics
    2.1 Preliminaries
    Circuit Theory, Circuit Analysis, High-Pass and Low-Pass Circuits, Resonant Circuits, The Laplace-Transform Method, RLC Circuits, Transient Response of Resonant Circuits, Transformers and Mutual Inductance, Compensation, Filters,Computer-Aided Circuit Analysis
    2.2 Passive Components
    Fixed Resistors and Capacitors, Variable Resistors,Transmission Lines, Coaxial Connectors, Relays
    2.3 Active Components
    Diodes, Transistors, Silicon-Controlled Rectifiers, Unijunction Transistors, Thyratrons,
    2.4 Amplifiers and Pulse Electronics.
    Definition of Terms, General Transistor-Amplifier Operating Principles, Operational-Amplifier Circuit Analysis, Instrumentation and Isolation Amplifiers, Stability and Oscillators, Detecting and Processing Pulses
    2.5 Data Acquisition
    Data Rates, Voltage Levels and Timing, Format, System Overhead, Analog Input Signals, Multiple Signal Sources: Data Loggers, Standardized Data-Acquisition Systems, Control Systems, Personal Computer (PC) Control of Experiments
    2.6 Extraction of Signal from Noise
    Signal-to-Noise Ratio, Optimizing the Signal-to-Noise Ratio, The Lock-In Amplifier and Gated Integrator or Boxcar, Signal Averaging, Waveform Recovery, Coincidence and Time-Correlation Techniques

    3. Detectors
    3.1 Optical Detectors
    3.2 Noise in Optical Detection Process
    Shot Noise, Johnson Noise, Generation-Recombination (gr) Noise, 1/f Noise
    3.3 Figures of Merit for Detectors
    Noise-Equivalent Power, Detectivity, Responsivity, Quantum Efficiency, Frequency Response and Time Constant, Signal-to-Noise Ratio
    3.4 Photoemissive Detectors
    Vacuum Photodiodes, Photomultipliers, Photocathode and Dynode Materials, Practical Operating Considerations for Photomultiplier tubes
    3.5 Photoconductive Detectors
    3.6 Photovoltaic Detectors (Photodiodes)
    Avalanche Photodiodes, Geiger Mode Avalanche Photodetectors
    3.7 Signal-to-Noise Ratio Calculations
    Photomultipliers, Direct Detection with p–i–n Photodiodes, Direct Detection with APDs, Photon Counting
    3.8 Particle and Ionizing Radiation Detectors
    Solid-State Detectors, Scintillation Counters, X-Ray Detectors
    Experimental
    3 Experiments (3CFU)
    1 Presentation (1CFU)

    English

    Teaching language

    ENGLISH

    Contents

    The student will acquire familiarity and knowledge with topics concerning i) the main notions concerning vacuum systems and related concepts (Vacuum technologies); ii) detection systems for electromagnetic radiation and charged particles; iii) the design, processing and communication of laboratory experiences

    Textbook and course materials

    Building Scientific Apparatus. John H. Moore, Christopher C. Davis, Michael A. Coplan and Sandra E. Greer. Cambridge University Press. ISBN: 9780521878586

    Course objectives

    The student will acquire familiarity and knowledge i) with topics concerning vacuum physics and the main vacuum and vacuum measurement systems; ii) Knowledge of the main detection systems. The acquired knowledge will be applied in the design of mini laboratory experiences.

    Prerequisites

    Good knowledge of the fundamental principles of thermodynamics and basic concepts of electronics

    Teaching methods

    The course will be administered through a block of theoretical lessons quantifiable in 4 CFU, and a laboratory one corresponding to 4 CFU.

    Evaluation methods

    The methods for verifying learning include: an oral part concurring to 50% of the final assessment; a laboratory part quantifiable in 38% of the final evaluation and a communication test quantifiable in 12%.

    Course Syllabus

    Pysics Laboratory (8 ECTS= 4 Lectures + 4 Laboratory)
    Theory
    1-Vacuum Technology
    1.1 Gases
    The Nature of the Residual Gases in a Vacuum System; Gas Kinetic Theory, Surface Collisions, Bulk Behavior versus Molecular Behavior.
    1.2 Gas Flow
    Parameters for Specifying Gas Flow, Network Equations, The Master Equation, Conductance Formulae, Pumpdown Time Outgassing
    1.3 Pressure and Flow Measurement
    Mechanical Gauges, Thermal-Conductivity Gauges, Viscous-Drag Gauges, Ionization Gauges, Mass Spectrometers Flowmeters
    1.4 Vacuum Pumps
    Mechanical Pumps, Vapor Diffusion Pumps, Entrainment Pumps
    1.5 Vacuum Hardware
    Materials, Demountable Vacuum Connections, Valves, Mechanical Motion in the Vacuum System, Traps and Baffles, Molecular Beams and Gas Jets, Electronics and Electricity in Vacuo
    1.6 Vacuum-System Design and Construction
    Some Typical Vacuum Systems, Differential Pumping, The Construction of Metal Vacuum Apparatus, Surface Preparation, Leak Detection, Ultrahigh Vacuum

    2-Electronics
    2.1 Preliminaries
    Circuit Theory, Circuit Analysis, High-Pass and Low-Pass Circuits, Resonant Circuits, The Laplace-Transform Method, RLC Circuits, Transient Response of Resonant Circuits, Transformers and Mutual Inductance, Compensation, Filters,Computer-Aided Circuit Analysis
    2.2 Passive Components
    Fixed Resistors and Capacitors, Variable Resistors,Transmission Lines, Coaxial Connectors, Relays
    2.3 Active Components
    Diodes, Transistors, Silicon-Controlled Rectifiers, Unijunction Transistors, Thyratrons,
    2.4 Amplifiers and Pulse Electronics.
    Definition of Terms, General Transistor-Amplifier Operating Principles, Operational-Amplifier Circuit Analysis, Instrumentation and Isolation Amplifiers, Stability and Oscillators, Detecting and Processing Pulses
    2.5 Data Acquisition
    Data Rates, Voltage Levels and Timing, Format, System Overhead, Analog Input Signals, Multiple Signal Sources: Data Loggers, Standardized Data-Acquisition Systems, Control Systems, Personal Computer (PC) Control of Experiments
    2.6 Extraction of Signal from Noise
    Signal-to-Noise Ratio, Optimizing the Signal-to-Noise Ratio, The Lock-In Amplifier and Gated Integrator or Boxcar, Signal Averaging, Waveform Recovery, Coincidence and Time-Correlation Techniques

    3. Detectors
    3.1 Optical Detectors
    3.2 Noise in Optical Detection Process
    Shot Noise, Johnson Noise, Generation-Recombination (gr) Noise, 1/f Noise
    3.3 Figures of Merit for Detectors
    Noise-Equivalent Power, Detectivity, Responsivity, Quantum Efficiency, Frequency Response and Time Constant, Signal-to-Noise Ratio
    3.4 Photoemissive Detectors
    Vacuum Photodiodes, Photomultipliers, Photocathode and Dynode Materials, Practical Operating Considerations for Photomultiplier tubes
    3.5 Photoconductive Detectors
    3.6 Photovoltaic Detectors (Photodiodes)
    Avalanche Photodiodes, Geiger Mode Avalanche Photodetectors
    3.7 Signal-to-Noise Ratio Calculations
    Photomultipliers, Direct Detection with p–i–n Photodiodes, Direct Detection with APDs, Photon Counting
    3.8 Particle and Ionizing Radiation Detectors
    Solid-State Detectors, Scintillation Counters, X-Ray Detectors
    Experimental
    3 Experiments (3CFU)
    1 Presentation (1CFU)

    facebook logoinstagram buttonyoutube logotype